International Organization for Standardization (ISO)

  • TC 299, Robotics. Develops high quality standards for the safety of industrial robots and service robots to enable innovative robotic product to be brought onto the market. In addition, develops standards in fields like terminology, performance measurement and modularity.
  • ISO 10218-1, Robots for industrial environments – Safety requirements – Part 1: Robots. Specifies requirements and guidelines for the inherent safe design, protective measures, and information for use of industrial robots. It describes basic hazards associated with robots, and provides requirements to eliminate or adequately reduce the risks associated with these hazards.
  • ISO 10218-2, Robots for industrial environments – Safety requirements – Part 2: Robot systems and system integration. Specifies requirements and guidelines for the safe integration of an industrial robot into a complete robot system, which includes end-effectors and other related equipment. This document describes basic hazards associated with robot systems, and provides requirements to eliminate or adequately reduce the risks associated with these hazards.
  • In the U.S., ISO 10218-1, has been Nationally Adopted as the single U.S. standard ANSI/RIA R15.06-2012 (see above for details).
    • Note: ISO 10218 does not apply to non-industrial robots although the safety principles established in ISO 10218 may be utilized for these other robots. Examples of non-industrial robot applications include, but are not limited to: undersea, military and space robots; tele-operated manipulators; prosthetics and other aids for the physically impaired; micro-robots (displacement <1 mm); surgery or healthcare; and service or consumer products.
  • ISO/TS 15066, Collaborative Robot Safety. Provides important information about how to implement a collaborative robot system in a manner that maintains safety for the human operator. In the U.S., this ISO TS has been Nationally Adopted as TR 606 (see above).
  • ISO/TR 20218-1, Safety Design for End-effectors. Describes how an industrial robot system should handle and manage end-effectors (end-of-arm tooling or EOAT) to maintain human safety, in either a collaborative or non-collaborative industrial environment.
  • ISO/TR 20218-2, Safety Design for Manual Load/ Unload Stations. Describes how to design a Manual Load/ Unload Station (MLUS) that will be safe and effective for the human worker to use.